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Oxidative cleavage and cyclization cascades of N-aryl peptides

have been achieved under palladium catalysis with air as the sole

stoichiometric oxidant.

Catalytic oxidations certainly represent one of the most chal-

lenging developments in Pd chemistry.1 The main studies in

this field deal with alcohol oxidations2 and oxidative couplings

between substrates such as alkenes and various heteroatom3 or

carbon4 nucleophiles. In opposition to classical non-oxidative

cross-coupling reactions, these transformations often involve a

Pd(II) salt. When a Pd(0) complex is generated in the catalytic

cycle, an external oxidizing agent has to be added to the

medium. Several suitable additives have been described: ben-

zoquinone,5 CuCl2, PhI(OAc)2,
6 peroxides.7 In the context of

environmentally friendly processes, molecular oxygen un-

doubtedly represents the best potential oxidant for organic

compounds.8 When oxygen is the sole stoichiometric oxidant,

efficient conversions are usually obtained by the use of addi-

tives such as DMSO,2a–d pyridines,2e–g tertiary amines,2h,i or

metal co-catalysts.1,9

We recently disclosed a new 4-component coupling between

an amine, a carbonyl compound, an isocyanide and a phenol

(Ugi–Smiles reaction).10 In an attempt to couple this new

reaction with Heck type processes, we prepared the bromo

compound 1a and treated it with a catalytic amount of

palladium in order to obtain phenanthridine derivatives.

Surprisingly, when heated overnight in DMF with Pd(OAc)2
(5 mol%), tricyclohexylphosphine (10 mol%) and potassium

carbonate (2 equiv.), the a-ketoamide 2a and the amine 3a

were obtained without any trace of the expected adduct

(Scheme 1).

We surmised that the slow introduction of oxygen into the

medium was responsible for such a cleavage and decided to

study further this new Pd-catalyzed fragmentation. The reac-

tion was indeed much faster when performed under air and

without added phosphine. Various a-arylamino amides be-

have similarly, as shown in Table 1, except for alkyl derivatives

such as 1b, which does not react under the conditions (Table 1,

entry 1). When ortho-nitro derivative 1i was submitted to these

conditions, the sole product we could isolate was the

a-ketoamide 2i (Table 1, entry 8).

Then we envisioned trapping the reactive intermediates with

new carbon–carbon bond formation. There are relatively few

successful cyclizations of stabilized carbanions onto alkenes

due to the competition with simple oxidation. Recently, Wide-

nhoefer et al. have reported several oxidative cyclizations of

b-dicarbonyl derivatives on alkenes with Pd(II)/Cu(II) catalytic

systems. However, this Pd(II)-promoted cyclization is

restricted to alkenyl-1,3-diones.9 The homoallylamine deriva-

tives 1k–1n were consequently prepared by a Staudinger–

Ugi–Smiles sequence from the homoallylazide and the latter

submitted to oxidative conditions. Instead of the former nitro

aniline–a-ketoamide mixture, we were pleased to observe the

formation of a polycyclic product 5k–5n resulting from a new

Pd cascade (Table 2).

The need for an acidic proton in the substrate (alkyl

derivatives such as 1b are not reactive under these conditions,

see Table 1, entry 1) is probably associated with the formation

of the palladium enolate I, which evolves into an iminium

derivative II. This latter may be converted to the amide 2 by

water or peroxides in the medium (Scheme 2). Alternatively,

the enolate I can be trapped by a pendant olefin to form a

Pd–alkyl species III, which further cyclizes onto the aromatic

ring. In both processes, the generated Pd(0) is oxidized back to

Pd(II) by the oxygen, as reported in similar palladium-cata-

lyzed reactions.

Other possible mechanistic pathways involve radicals as

classically described in Cu(I) chemistry.13 Indeed, the a-keto-
amide formation could result from the coupling of a peptidyl

Scheme 1 Pd-induced fragmentation of a-arylamino amide deriva-
tives.
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radical with oxygen.14 The former radical could also be

involved in a radical cascade forming the polycyclic product 5.

In conclusion, we have disclosed some new oxidative palla-

dium-catalyzed reactions with oxygen as the sole oxidant. The

reactive intermediates form a-ketoamides or can undergo

intramolecular cyclization to provide polycyclic derivatives

in a palladium-catalyzed cascade reaction. The natures of

the reactive intermediates are still under study in our research

group.
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Table 1 Pd-catalyzed oxidative cleavage11

Entry

Starting material
a-Ketoamide
2 (yield, %)

3a

(%)
Time of
reactionR1 R2

1 1b Cy CH3CH2– — — —
2 1c Cy Ph 2c (69) 80 3 h
3 1d Cy o-CH3Ph 2d (61) 47 17 h
4 1e Cy p-CNPh 2e (48) 52 3 h
5 1f Cy p-OMePh 2f (52) 86 6 h
6 1g Cy p-BrPh 2g (47) 59 3 h
7 1h Cy Quinolin-3-yl 2h (42) 82 1.5 h
8 1ia p-ClBn Ph 2i (49) — 3 h

a Performed with o-nitro substituted aniline.

Table 2 Pd-catalyzed cyclizations12

Entry Starting material Cyclized product Yield (%)

1 55

1k 5k

2 59

1l 5l

3 27

1m 5m

4 62a

1n 5n

a Isolated as a 2 : 1 mixture of diastereomers.

Scheme 2 Possible mechanisms.
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